Available online at www.sciencedirect.com

sciENCE dm“c*- JOURNAL OF
@ SOUND AND

VIBRATION

Journal of Sound and Vibration 290 (2006) 65—100

www.elsevier.com/locate/jsvi

Nonlinear dynamic analysis of a high-speed rotor supported
by rolling element bearings

S.P. Harsha™

Mechanical Engineering Group, Birla Institute of Technology & Science, Pilani 333031, India

Received 26 January 2004; received in revised form 4 March 2005; accepted 14 March 2005
Available online 31 May 2005

Abstract

The paper presents an analytical model for investigating structural vibrations of a high-speed rotor
supported by rolling bearings. The mathematical formulation accounted for tangential motions of rolling
elements as well as inner and outer races with the sources of nonlinearity such as Hertzian contact force,
geometrical imperfections, i.e. surface waviness and radial internal clearance, resulting transition from no-
contact to contact state between rolling elements and the races. In the formulation the contacts between the
rolling elements and the races are considered as nonlinear springs, whose stiffnesses are obtained by using
Hertzian elastic contact deformation theory. The implicit type numerical integration technique Newmark-f
with Newton—Raphson method is used to solve the nonlinear differential equations iteratively. The results
show the appearance of instability and chaos in the dynamic response as the speed of the rotor-bearing
system is changed. Period doubling and mechanism of intermittency have been observed as the routes to
chaos. The appearance of regions of periodic, sub-harmonic and chaotic behavior is seen to be strongly
dependent on rotor speed and these imperfections. Poincaré maps and frequency spectra are used to
elucidate and to illustrate the diversity of the system behavior.
© 2005 Elsevier Ltd. All rights reserved.

1. Introduction

The vibration analysis of the rotor-bearing system is becoming more important as demands on
running accuracy are increased. Growing interest is devoted to rolling bearings, not only as
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Nomenclature Viotor =potential energy of the rotor
Vi race = potential energy of the inner race
F,= unbalance rotor force, N Vo race = potential energy of the outer race
I = moment of inertia of each rolling Vie = potential energy of the rolling elements

element

Vprings = potential energy of the springs

I otor = moment of inertia of the rotor Xin, Vin = center of the inner race

I, = moment of inertia of the inner race Xout, Vour = center of the outer race

Iow = moment of inertia of the outer race din =  deformation at the point of contact at

Kin» = nonlinear stiffness of the inner race the inner race

Ko = nonlinear stiffness of the outer race Oout = deformation at the point of contact at
= arc length, mm . the outer race

mi, = mass of the inner race, kg (¢)n, = angular velocity of the inner race

m; = mass of the rolling elements, kg (¢)out =angular velocity of the outer race

Moy = mass of the outer race, kg 70 = internal radial clearance, pm

Myotor = mass of the rotor, kg A= wavelength, mm

N, = number of wave lobes Weage = angular velocity of cage relating to the
N, = number of rollers cage

R= radius of the outer race (IT), = initial amplitude of the wave at race,
r= radius of the inner race pm

fin =  position of mass center of the inner race (I1), = maximum amplitude of the wave at
rout = position of mass center of the outer race race, pm

T =  kinetic energy of the bearing system p; =  radial position of the rolling element
Trotor = kinetic energy of the rotor Py = radius of each rolling element

T race = kinetic energy of the inner race 0; = angular position of rolling element

To_ race = kinetic energy of the outer race z = position of jth rolling element from the
T... = kinetic energy of the rolling elements center of the inner race

V' = potential energy of the bearing system VC = varying compliance frequency

structural elements but also as sources of vibration. In general, the rotor-bearing system displays
nonlinear behavior due to nonlinear Hertzian contact force, bearing clearances, and surface
waviness with high-speed rotor. The behavior of the nonlinear system often demonstrates
unexpected behavior patterns that are extremely sensitive to initial conditions. The most
fundamental cause of rolling bearing vibration is the periodic variation of assembly stiffness that
arises as the cage rotates. There is also a parametric effect because of the varying compliance (VC)
of the bearing. This study is restricted to roller bearings with a pure radial load. In practice such
bearings will normally have a small positive clearance, either present already when the bearing is
fitted or gradually developing with wear. The approach used in this paper presupposes the
existence of such a clearance.

Clearance, which is provided in the design of bearing to compensate the thermal expansion, is
also a source of vibration and introduces the nonlinearity in the dynamic behavior. The study of
the effect of clearance nonlinearity on the response of rotors has gained a lot of attention lately
because of the development of high-speed rotors such as the space shuttle main engine turbo-
pump rotor. Clearance nonlinearity is different from most of other nonlinearities because it
cannot be approximated by a mathematical series. The early work in rotor dynamics by
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Yamamoto [1] introduces nonlinearity to the Jeffcott equation by including the effect of bearing
clearances (or dead bands). The conclusion of this work shows that the maximum amplitude at
critical speed decreases with increasing radial clearance and critical speed disappears under the
condition beyond a marginal clearance, which depends on the amount of unbalance. The VC
effect was studied theoretically by Perret [2] considering a deep groove ball bearing with the elastic
deformation between race and balls modeled by the Hertzian theory and no bending of races.
Meldau [3] theoretically studied the 2D motion of shaft center. Both Perret [2] and Meldau [3]
performed a quasi-static analysis since inertia and damping force were not taken into account.

Sunnersjo [4] studied the VC vibrations theoretically and experimentally, taking inertia and
damping forces into account. Fukata et al. [5] first took up the study of VC vibrations and the
nonlinear dynamic response for the ball bearing supporting a balanced horizontal rotor with a
constant vertical force. It is a more detailed analysis as compared to Sunnersjo’s [4] work as
regimes of super-harmonic, sub-harmonic and chaotic behavior are found out. Mevel and
Guyader [6] have developed a theoretical model of a ball bearing supporting a balanced
horizontal rigid rotor, with a constant vertical radial force. This is similar to the work done by
Fukata et al. [5] but more results have been reported for parametric studies undertaken and routes
to chaos traced out. Chaos in this model of bearing has been reported to come out of the sub-
harmonic route and the quasi-periodic route.

The arc length continuation technique has been used for obtaining dynamic characteristics of
ball bearings by Sankaravelu et al. [7]. This technique enables one to identify the possible
parameter ranges for which the jump phenomena or the sudden change of the dynamic behavior
of the system occurs. The ball bearing taken for study supports a constant vertical radial load of a
balanced horizontal rotor. Sankaravelu et al. [7] have reported that the arc length continuation
method takes less computation time when compared to direct integration, and the method obtains
steady-state response and stability analysis simultaneously. The eigenvalues of the Floquet matrix
are obtained with the shooting technique, which gives the bifurcation points. The system
Sankaravelu et al. [7] have taken for study is the same as that taken by Fukata et al. [5]. This work
reports the appearance of chaotic response due to the intermittency. Once the stability sets in
numerical integration, it is used to obtain the response. Tamura et al. [8] have theoretically
estimated the stiffness of the ball bearing subjected to a constant radial load. Gargiulo [9] has
developed a new set of equations for providing initial estimates of stiffness of rolling element
bearings.

Yamauchi [10] developed a numerical harmonic balance method using the FFT algorithm for
multiple degree of freedom rotor systems, including nonlinear bearings and couplings. Saito [11]
calculated the nonlinear unbalance response of horizontal Jeffcott rotors with radial clearance.
Both studies were concerned only with the harmonic response. Childs [12] presented an
explanation for the sub-harmonic response of rotors in the presence of bearing clearance and side
load. Choi and Noah [13] analyzed the coherence of super- and sub-harmonic in a rotor-bearing
model using the harmonic balancing method along with a discrete Fourier transform procedure.
For multi-disk rotor systems, Nataraj and Nelson [14] developed a periodic solution method
based on a collocation approach for the response of the rotor. They utilized a sub-system
approach to reduce the size of the resulting system of algebraic equations. The dynamic responses
of rotors in high-speed rotors with bearing clearance have been studied by Ehrich [15-17]. These
studies by Ehrich show the appearance of high sub-harmonic and chaotic response in the rotor.
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Apart from super- and sub-harmonic responses, aperiodic whirling motions in a high-pressure
oxygen turbo pump of the space shuttle main were also reported by Kim and Noah [18].

It is generally accepted that it is not possible to produce a perfect surface or contour even
with the best machine tools and this also applies to ball-bearing manufacturing. Surface waviness
is a manufacturing imperfection. An imperfection is called waviness if its wavelength is much
longer than the Hertzian contact width. It may be caused by different manufacturing
malfunctions such as uneven wear of the wheel in grinding operations, variable interactions
between the tool and work piece, vibrations of machine elements or movements of the work in
the fixture, etc. Choudhury and Tandon [19] presented a theoretical model to obtain vibration
response by considering distributed defects as waviness at the races and off-size rolling elements.
Meyer et al. [20] presented a mathematical technique to predict the spectral components
of vibrations emanating from the effects like misaligned races, eccentric races, off size rolling
elements and outer race waviness. Expressions were derived for radial displacement of the
bearing stationary race. Wardle and Poon [21] also pointed out the relation between the
number of balls and waves for severe vibrations to occur. When the number of balls and waves
are equal there will be severe vibrations. Wardle [22] showed that ball waviness produced
vibrations in the axial and radial directions at different frequencies. Aktiirk [23] presented a
mathematical model consisting of inner, outer and ball waviness and showed that for inner race
most vibrations occur when the ball passage frequency and its harmonics coincide with the
natural frequency.

In this work, the effects of rotor speed with geometrical imperfections have been studied. The
appearance of periodic, sub-harmonic, chaotic and Hopf bifurcation is seen theoretically. The
results presented here have been obtained from a large number of numerical integrations and are
mainly presented in the form of Poincaré maps and frequency spectra.

2. Problem formulation

In this section, a mathematical model for the analysis of the structural vibration in rolling
element bearings has been developed. Initially the expressions for kinetic and potential energies
are formulated for all components of rolling element bearing. The equations of motion, which
describe the dynamic behavior of the complex model, have been derived by considering these
energies expression and the Lagrange’s equations. A schematic diagram of rolling element bearing
is shown in Fig. 1. For investigating the structural vibration characteristics of rolling element
bearing, a model of bearing assembly can be considered as a spring—mass system, in which the
outer race of the bearing is fixed in a rigid support and the inner race is fixed rigidly with the rotor.
A constant radial force acts on the system.

In the mathematical modeling, the rolling element bearing is considered as the spring-mass
system and rolling elements act as nonlinear contact spring as shown in Fig. 2. Since the Hertzian
forces arise only when there is contact deformation, the springs are required to act only in
compression. In other words, the respective spring force comes into play when the instantaneous
spring length is shorter then its unstressed length, otherwise the separation between the rolling
element and the races takes place and the resultant force is set to zero. A real rotor-bearing system
is generally very complicated and difficult to model; so, for an effective and simplified
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Fig. 1. A schematic diagram of a rolling bearing.

mathematical model the following assumptions are made:

1.

W

Deformations occur according to the Hertzian theory of elasticity. Small elastic deformations
of the rolling elements and the races are considered but plastic deformations are neglected.

. The rolling elements, the inner and outer races and the rotor have motions in the plane of

bearing only.

. The angular velocity of the cage is assumed to be constant.
. The rollers in a rolling element bearing are assumed to have no angular rotation about their

axes, i.e. no skewing. Hence, there is no interaction of the corners of the rollers with the cage
and the flanges of the races.

. All the bearing components and the rotor are rigid, i.e. there is no bending.
. The bearings are assumed to operate under isothermal conditions. Hence, all thermal effects that

may arise due to the rise in temperature, such as change of lubricant viscosity, expansion of the
rolling elements and the races and reduction of endurance of the material, are considered absent.

. There is no slipping of rollers as they roll on the surface of races. Since there is perfect rolling of

the rollers on the surface of races and the two points of rollers touching the races have different
linear velocities, the center of the roller has a resultant translational velocity.

. The damping of a roller bearing is very small. This damping is present because of friction and a

small amount of lubrication. The estimation of the damping of roller bearing is very difficult
because of the dominant extraneous damping which swamps the damping of the bearing.
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Fig. 2. Mass—spring model of the rolling bearing.

9. The cage ensures the constant angular separation (f) between rolling elements, hence, there is
no interaction between rolling elements. In addition, at any given instant, some of the rolling
elements will contact both races. Hence,

_27r

=3 (1)

2.1. Race waviness

An important source of vibrations in rolling bearings is waviness. These are global sinusoidal-
shaped imperfections on the outer surface of the bearing components. Waviness is realized in the
form of peaks and valleys of varying height and width. Therefore, for mathematical modeling
using the waviness effect, a statistical approach is necessary in order to have a complete solution.
If the races are assumed to bend due to rolling element loads, then the flexural vibrations of the
races as well as the rigid body motion have to be considered. To avoid these problems the
races are assumed bendless under these loads and a sinusoidal wavy surface is assumed as shown
in Fig. 3(a). The wavelength is assumed to be much longer than the roller-to-race foot print width
and the wave geometry itself is assumed to be unaffected by contact distortion. Waves are
described in terms of two parameters: the wavelength (1), which is the distance taken by a single
cycle of the wave and its amplitude (I1,).



S.P. Harsha | Journal of Sound and Vibration 290 (2006) 65—100 71

1, yé j-th Ball

Locus of groove radius center

- .
of inner race
1,
Locus of groove radius center
(a) of outer race

x\l’

A
Y

(b)

Fig. 3. (a) Race waviness model; (b) wave of the race.

The amplitude of the wavy surface is often measured with respect to the central point at a
certain angle from the reference axis. Hence, the amplitude of the sinusoidal wave is

(1), = I, sin <2n %) )

The race circumference has a sinusoidal wavy surface, therefore, the radial clearance consists of a
constant part and a variable part. Hence, the amplitude of the wave of race is

(1, = (110 + (1)sin (22 5 ). @
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where II,, is the maximum amplitude of the wave and 1 is the initial wave amplitude (or constant
clearance) as shown in Fig. 3(b).
The arc length (L) of the wave at the contact angle is

L= r0j. (4)

The wavelength is the ratio of the length of the race circumference to the number of waves on
circumference, which is

2rm
A= N )
The amplitude of the race waves at the contact angle is
(IT); = (Ip) + (I,) sin(N,,0)). (6)
Hence, the contact angle is
0j=]2\]—72(j—1)+a)cagexl. (7)
The cage speed wcage 18
Dcage = % Oinner {1 — lp{—ﬂ +% Oouter [1 + 1%] . (8)
The VC frequency is
Oye = NpOcage- 9)

Hence, the instantaneous amplitude of waviness at the contact angle is

(), = 110+ 11y s | No{ 37 1+ o 1] (10)

2.2. Contact stiffness

Hertz considered the stress and deformation in the perfectly smooth, ellipsoidal, contacting
elastic solids. The application of the classical theory of elasticity to the problem forms the basis of
stress calculation for machine elements as ball and roller bearings. Therefore, the line contact
between the race and roller develops into an area contact, which has the shape of an ellipse with «
and b as the semi-major and semi-minor axes, respectively. The curvature sum and difference are
needed in order to obtain the contact force of the roller. Hertz equations for elastic deformation
involving line contact between solid bodies are given by Eschmann et al. [24] as

4.05 Q0.925
Here, I 1s the length over which rollers are actually in contact. The contact force is

0 = 56065.703 x 19226'%  (N). (12)
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Hence, the nonlinear stiffness associated with the /ine contact is given as

k = % = 56065.703 x 1°%226°%% (N /mm). (13)

2.3. Derivation of governing equations of motion

The equations of motion that describe the dynamic behavior of the complete model can be
derived by using Lagrange’s equation for a set of independent generalized coordinates as

dor ar N oV
dr o{p} Of{p} Ofp}

where T, V, p and f are kinetic energy, potential energy, vector with generalized degree-of-
freedom (dof) coordinate and vector with generalized contact forces, respectively. The kinetic and
potential energies can be subdivided into the contributions from the various components, i.e. from
the rolling elements, the inner race, the outer race and the rotor.

The total kinetic energy (7") of the rotor-bearing system is the sum of the rolling elements, inner
and outer races and the rotor and is written as

T= Tr.e. + Ti_race + To_race + Trotor- (15)

The subscripts i_race, o_race and cage refer to, respectively, the inner race, the outer race and the
cage. The subscript r.e. indicates the rolling elements.

The potential energy is provided by deformations of the balls with the races and deformations
occur according to Hertzian contact theory of elasticity. Potential energy formulation is
performed taking datum as the horizontal plane through the global origin. The total potential
energy (V) of the bearing system is the sum of the balls, inner and outer races, springs and the
rotor and is written as

={/} (14)

V= Vr.e. + Vi_race + Vo_race + Vsprings + Vrotora (16)

where Vie, Vi races Vo race and Vigor are the potential energies due to elevation of the rolling
elements, inner and outer races and the rotor, respectively. Vprings 1 the potential energy due to
nonlinear spring contacts between rollers and the races.

2.3.1. Contribution of the inner race

Apart from local deformations in the contacts, the inner race is considered as a rigid body. The
kinetic energy of the inner race about its center of mass is evaluated in x- and y-frame. The
position of the origin of the moving frame relative to the reference frame is described by
transitional dof x;, and y;,.

The kinetic energy expression for the inner race is:

1 5SS 1 )
T race = 3 Min(Fin - Tin) + 3 Lin - (17)

The displacement vector showing the location of the inner race center with respect to that of the
outer race center is then given by

— — —
Yin = Fout + ¥in_out (18)
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or
E; = ()Zl)n + x;)ut>f+ (,V_l)n +y:ut>j' (19)
Differentiating r;, with respect to time (¢) and putting that value in Eq. (17) gives
1 ) . 1 2
Ti_race = E min(xizn + yizn) + E Iind)in- (20)

Since the position of the inner race is defined from the outer race center, the potential energy for
the inner race is

Vi_race = Mjp g(yin_out + yout)- (21)

2.3.2. Contribution of the outer race

The outer race is also considered as a rigid body and it is assumed that the outer race is
stationary. Hence, 7oyt = 0 and ¢, = 0.

The kinetic energy expression for the outer race is zero.

The potential energy of the outer race is

Vo_race = Mout 9V out- (22)

2.3.3. Contribution of the rolling elements

The rolling elements are also considered as rigid bodies. For the determination of their
contribution to the kinetic energy, the position of the jth-rolling element is describe by two
transitional dof,

(pj+i’out) and ¢/

The kinetic energy due to rolling elements is to be obtained as a summation of those from each
element as

Nb

Tre.=>» T (23)
j=1

The position of the center of the roller is defined with respect to the outer race center. Hence, the
kinetic energy of the rolling elements may be written as

1 = = = = 1 .2
T/'=5m1(pj+rout)’(pj+rout)+§I_/(bj- (24)
The displacement vector showing the location of jth rolling elements is

,5; = (p; cos 0;)i + (p; sin 0;). (25)

For the outer race center it is

7')out == ;Eout;"i‘ })outf' (26)
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The summation of Eqgs. (25) and (26) after differentiation with respect to time (¢) leads to the
following expression:
(;] + l’in) . (,5; + rjin) = ;0/2 cos® 0; + p/2 sin® 0; - 0/2 —2p; - p; - 0; cos 0, sin 0;
+ X2+ 2%ou(p; cos 0 — p; sin 0; - 0;) + p; sin” 0;
+ p_f cos® 0); - 9? +2p;-p; - 0; cos 0; sin 0
+ Vou + 2ou(pj cos 0; — p; sin 0; - 0)). 27)

The outer race is assumed to be stationary, hence X, =0 and y,,, = 0. Therefore, Eq. (27)
becomes

() + Fout) - (9 + Fou) = p? c0s2 0, + p2sin® 0; - 0 + j2sin” 0; + p? cos 0; - 0 (28)
) i j - J 7Y J S E ST
or

= = = = ) -2

(pj + Fout) - (pj + Fout) = (:0/2 + p/2 ’ 6/) (29)

From Eq. (24), we get
1 . 20 1 .2
szimj(p]?+p]?-0j)+zlj¢j. (30)

It is assumed that there is no slip, hence, the relative transitional velocity of the outer race and
rolling element must be same and in opposite direction. Therefore, the contact equation for the
jth-rolling element and the outer race can be written as

p($; = 0) = —R(¢oy — 0)). (31)

Since the outer race is stationary,

Pou = 0. (32)
The rotation of the jth-rolling element about its center of mass is
) ; R
¢b; = 0]-(1 + —>. (33)
Py
Now the kinetic energy of the rolling elements can be written as
N, 2
1 . %) 1 .2 R
T =30 S m@d 4070+ 4 1) (1 T p_) . (34)

j=1
The position of the center of the roller is defined with respect to the outer race center. Hence, the
potential energy of the rolling elements may be written as

Nb

Vie.= Y mig(p; sin 0; + you) (35)
j=1
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or

Ny
Vie =mgNpyou + Y _(mg p; sin 0)). (36)
j=1

2.3.4. Contribution of the rotor

The kinetic energy of the rotor is calculated by assuming that its center remains coincident with
the inner race. Hence, the kinetic energy of the rotor is
1 )

1 . .
Trotor = 5 mrotor(xizn + yizn) + 5 Iiotor Hrotor' (37)
The rotor center coincides with the inner race center and position of the inner race center is
defined with respect to the outer race center. Hence, the potential energy of the rotor is expressed

as
Viotor = mrotorg()}in_out + yout)' (38)

2.3.5. Contribution of the contact deformation

The contacts between balls and races are treated as nonlinear springs, whose stiffness is
obtained by Hertzian theory of elasticity. The expression of potential energy due to the contact
deformation of the springs is

Ny
Vspring Z k 52 +Z koutéout (39)
j=1

The deformation at contact points between the jth rolhng element and the inner race is
O = [{r +p,} — 2] (40)

In this expression, if {r + p,} > y;, compression takes place and restoring force acts.
If {r + p,} <y;, no compression and restoring force is set equal to zero.
Similarly, at the outer race the deformation at the contact points is

out [R {pj + p;}] (41)

In this expression, if R<{p; + p,}, compression takes place and restoring force act.

If R>{p; + p,}, no compression and restoring force is set equal to zero.

The radial internal clearance (y,) is the clearance between the imaginary circles, which
circumscribe the rolling elements and the outer race. Hence, with the consideration of radial
internal clearance (y,), the contact deformations at the inner and outer races are

5in = [{l" + Py + yO} - X/]v (42)

dout = [R—{p; + p, + 70}]- (43)
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2.4. Equations of motion

The kinetic energy and potential energy contributed by the inner race, the outer race, rollers,
rotor and springs, can be differentiated with respect to the generalized coordinates
P (j=1,2,...,Np), xin, and y;, to obtain the equations of motion. For the generalized
coordinates Pjs where j = 1,2,..., Ny, the equations are

. . ) aX‘ 1 Ok;
m;p; + m;g S 9_/' + n’ljpjg - (kin)[éin]+ = + (kout)[éout]_g. + = a—n[ém:ﬁr
op; 2 0p;
1 Okout ) .
~ ——[0out]:. =0, =1,2,...,N,. 44
For the generalized coordinate x;,, the equation is
G Ay .
(Min + Mrotor)Xin — ; kin[éin]+ K]jn = F, sin(w?). (45)
For the generalized coordinate y;, the equation is
. all a}{j
(min + mrotor)yin + (min + mrotor)g - Z kin[(sout]+ 5 =W + Fu COS(C()Z). (46)
Jj=1 in

This is a system of (N, + 2) second-order, nonlinear differential equations. No external radial
force is allowed to act on the bearing system and no external mass is attached to the outer race.
The “+ sign as subscript in these equations signifies that if the expression inside the bracket is
greater than zero, then the rolling element at angular location 0; is loaded giving rise to restoring
force, and if the expression inside the bracket is negative or zero, then the rolling element is not in
the load zone, and restoring force is set to zero. For the balanced rotor condition, the unbalance
rotor force (F,) is set to be zero.

The deformation of spring at inner race y; (Fig. 2) can be obtained as

Xin + % €08 Oy = Xour + p; €os 0;, 47)
Yin % sin Oy =y + P, sin 0;. (48)

From these two equations, the expression for y; is obtained as
Xj = [(xout - xin)2 + sz + zpj(xout - xin) Cos Hj + 2pj(y0ul - yin) sin Gj + (yout - yin)z]l/z' (49)
Now the partial derivatives of y; with respect to Pjs Xin and y;, are

0% pj + (our — Xin) €08 0 + (Vour — Vin) Sin 0
% %

: (50)

0y _ (Xout — Xin) — p; cos 0;

51
o 7 , (51)
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an _ (youl - yin) - pj sin 9/

(52)
ayin Xj
The nonlinear stiffness of spring for the inner and the outer race obtained by Eq. (13) is
(kin) = 56065.703 x 1225298 (N/mm), (53)
(kout) = 56065.703 x 19:26%% (N /mm), (54)
A oy,
©kin) _ 4485256 x [1:0200%) 4. (55)
9p; Op;
(aé‘p"‘f‘) = —4485.256 x [8];072 (%) (56)
J

3. Computational solution of the equations

The equations of motion (44-46) are solved by the modified Newmark-f method to obtain the
radial displacement and velocity of the rolling elements. In order to eliminate the effect of the
natural frequency an artificial damping was introduced into the system. With this damping,
transient vibrations are eliminated. Thus, peak steady-state amplitude of vibration can be
measured. The longer the time to reach steady-state vibrations, the longer the CPU time needed,
and hence the more expensive the computation. A value of ¢ = 320 Ns/m is chosen. To study the
stability of the system, parameters of rolling bearing are selected as shown in Table 1.

3.1. Initial conditions

For the numerical technique used, the initial conditions and step size are very important
for a good and computationally inexpensive solution. Particularly for nonlinear systems,

Table 1

Geometric and physical properties used for the rolling bearings

Mass of rolling element () 0.06kg
Mass of the inner race (miy) 0.09kg
Mass of the outer race (m1oy) 0.09kg
Mass of rotor (m;ot0r) 0.6kg
Length over which the rollers are actually in contact—rolling

rearing only (/eg) 8 mm
Internal radial clearance (y) 20 um
Maximum amplitude of waviness (I1,) 2 um
Initial amplitude of waviness (I1) I ym
No. of rolling elements (V,) 8

No. of wave lobes (NV,,) 8
Initial radial position of jth rolling element (p;) 27 mm

Radial load (W) 6N
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different initial conditions mean a totally different system and hence different solutions.
The larger the time step, At, the faster is the computation. On the other hand, the time step should
be small enough to achieve accuracy. However, very small time steps can increase the truncation
errors. The Newmark-f method has a provision for estimating local truncation error. For various
speeds and W = 6 N, the system is numerically integrated on a Silicon Graphics workstation for a
number of time step sizes. The local truncation error and CPU time are plotted against the time
step as shown in Fig. 4. One can see that region A-A’ gives the best results. Therefore an
optimization should be made between them. The time step for the investigation is taken to be
At = 107 s. The non-autonomous shooting method is used for finding out the fixed point of the
steady-state solution. The fixed point is used as the initial condition for numerical integration
results in a steady-state solution with no transient. When some arbitrary initial conditions are
taken, transients are formed, which take some time to die down. For the nonlinear system the
transients may lead to instability. On taking fixed point as initial conditions, the transients are not
formed resulting in the saving of a considerable computational time. At time ¢ = 0O the following
assumptions are made:

(1) The shaft is held at the center of the bearing and all rollers are assumed to have equal radial
preload.

(i1) The shaft is then given initial displacements and velocities. For fast convergence the initial
displacements are set to the following values: xop = 107°m and y, = 107°m. The initial
velocities are assumed to be zero: xp = 0 and y, = 0.

(i) When ¢>At the initial conditions have already passed and the normal procedure
commences.

Rolling elements are radially preloaded in order to ensure the continuous contact of all rolling
elements and the raceways, otherwise a chaotic behavior might be observed.
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Fig. 4. Effect of step size on stability of system.
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3.2. Power spectra and Poincaré maps

The time history of the unbalance responses has been examined for periodic behavior. This is
done by examining the time series output, once per cycle, for sufficiently long segments so that
multiple periodic and aperiodic behaviors can be discerned from the post-transient solutions.
Frequency spectra and Poincare maps are generated for studying the stability and nature of the
solution. Aperiodic behavior in a deterministic dynamical system is characterized by broadband
frequency spectra. In sub-synchronous frequencies, the significant energy shows the aperiodic
nature of the response. Poincare maps are produced by plotting one of the variables of the system,
e.g. the vertical or horizontal displacement, against its derivative, once per rotational periodic of
the system. For synchronous limit cycle a single point in the plane is repeated every cycle, while
nth sub-harmonic is revealed by n and only n repeated points. However, Poincare maps of the
chaotic system have a fractal structure, which can be used to identify chaotic states.

4. Results and discussion

In this work, besides speed as a parameter of study, the effect of radial internal clearance and
surface waviness is also studied. Both are important parameters of study because even if these are
inevitable, these can be controlled to a good extent. Speed response plots are obtained for the
combination of the above parameters under study. These plots are generated by numerical
integration to reach steady state when peak-to-peak (pp) values of x and y displacements are
obtained. The overall response plot of rolling element bearing for /ine contact with radial
clearance 1 pm and radial load of 6N is shown in Fig. 5. The peak-to-peak vertical response is less
than the peak-to-peak horizontal response in the region of high amplitude. The overall response
plot has a very rough appearance. Two regions can be identified, which have high pp response.
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Fig. 5. Response plot for y, = 1 um and W =6 N.
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Table 2

Nature of solutions for yp = lum, W =6N

Speed (rev/min) Nature of solution

Upto 775 1T stable low amplitude
780-1900 Period 1 unstable (at VC and harmonics)
1950-2200 Chaos developing

2350-5640 Chaotic

5700-6885 Periodic

6990-8170 Chaotic

8200 Chaotic natures decreasing
8500-9700 Period | unstable (mixed nature)
9750-10020 Intermittent Chaotic
10030-10300 Chaotic

10350 Periodic

These regions are shown in Fig. 5 bounded by lines A-A" and B-B'. The nature of solutions for
various speeds is given in Table 2.

Two regions of period 1 unstable response are shown in Fig. 5. The first region from 780 to
5615 rev/min has period doubling bifurcations. This is also a multi-valued region. The eigenvalues
of the monodromy matrix go out through —1. Fig. 6 shows the nature of the solution at 1500 rev/
min. The VC and its harmonics (super-harmonic) character of the frequency spectra is also
brought out by the Poincaré map. The chaos is at the developing stage from 1950 rev/min. The
phase plot also shows that more dense orbits points are surrounded by less dense points. Fig. 7
shows the nature of solution at 2200 rev/min. In the frequency spectrum a band structure is seen in
between spikes of VC and its multiples. The fine-layered structure of the strange attractor is also
clear from the Poincare map. As speed increases, the chaotic region appears at 2350-5640 rev/min;
the loss of stability is seen to be caused by the eigenvector crossing from +1. In this region,
the periodic doubling bifurcations give way to chaos at about 2400 rev/min and this chaotic
region extends upto 5640 rev/min. The chaotic solutions at 2500, 3800, 4000, 4050, 5100 and
5200 rev/min are shown in Figs. 8—13. The frequency spectrum has a dense band structure as
shown in between spikes of VC and its multiples. The fine-layered structure of the strange
attractor is also clear from Poincaré maps. The orbit at this speed does not repeat itself. The
Poincare maps of chaotic solutions have fractal structures that repeat as the maps are magnified.
The route to chaos by sudden loss of stability through a limit point has been shown by Sankarvelu
et al. [7]. The chaotic region seems to be at end stage from 5400 rev/min as shown in Fig. 14.
Further increase in speed returns stability in the speed range from 5500 to 6885 rev/min.

The second region from 6915 to 10350 rev/min has period doubling bifurcations as shown in
Fig. 5. This is also a region of multi-valued region. Period one solution becomes unstable from
6915 to 10350rev/min, because of periodic doubling bifurcations. The solution undergoes
pitchfork bifurcations till 6950 rev/min after which at 6990rev/min the chaotic solution is
obtained. Fig. 15 shows the nature of solution at 7000 rev/min. In the frequency spectrum a band
structure is seen in between spikes of VC and its multiples. The fine-layered structure of the
strange attractor is also clear from Poincaré maps.
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For the first chaotic region 6990-8270 rev/min, the loss of stability is seen to be caused by the
eigenvector crossing from +1. In this region, the periodic doubling bifurcations give way to chaos
at about 6990 rev/min and this chaotic region extends upto 8270 rev/min. The chaotic solutions at
7100, 7500 and 8000 rev/min are shown in Figs. 16-18, respectively. The frequency spectrum has a
dense band structure as shown in between spikes of VC and its multiples. The fine-layered
structure of the strange attractor is also clear from Poincaré maps. The orbit at this speed does not
repeat itself. The Poincaré maps of chaotic solutions have fractal structures that repeat as the map
i1s magnified. The time responses also show beat- and chaos-like behavior. It is clear that loss of
periodicity is one characteristic of chaotic solution. The response characteristic at 8200 rev/min
i1s shown in Fig. 19. The horizontal and vertical displacement spectra (Fig. 19) have banded
structure and orbit with dense and less dense regions. Analysis has shown that the chaotic
character becomes weaker from 8270 rev/min onwards. At 8500 rev/min, the response shown in
Fig. 20 can be considered neither perfectly chaotic nor perfectly periodic. It is not perfectly or
predominantly chaotic because the two spectra for horizontal and vertical displacements have
only a slightly banded structure. The orbits in Poincaré maps are complicated because of this
mixed nature of the response.

At 10000rev/min, the response explodes into intermittent behavior. The eigenvalues of
monodromy matrix cross from 41, so this becomes an intermittent behavior of type I. In
Fig. 21, the frequency spectra show the band structure and the orbit shows a small dense region
surrounded by a less dense structure. As speed increases, the second chaotic region appears between
10030 and 10300 rev/min, the loss of stability is seen to be caused by the eigenvector crossing from
+1. In this region, the periodic doubling bifurcations give way to chaos at about 10030 rev/min and
this region extends upto 10300 rev/min. Further increase in speed returns perfect stability in the
speed range from 10 350 rev/min onwards. Also the peak-to-peak (pp) response goes down (Fig. 5),
which is an indication of the end of the multi-valued region of response.

5. Conclusions

The nonlinear response of a balanced rotor with internal radial clearance and surface waviness
has been demonstrated to be chaotic for some specific combination of unbalance and rotational
speed combined with a misalignment of races to provide sufficient nonlinearity. For cases, which
are stable to free motion and not close to the neutral stability line, a limited range of chaos can be
detected. From the study of the response, the following conclusions can be drawn.

(1) The rotor-bearing system has three high amplitude regions. The first region is one of periodic
doubling response where the period one response is unstable. This region also has bifurcations
leading to 1T and 2T solutions. Chaotic responses appear in this region, which has a strong
attractor as compared to chaotic behavior in other regions. As Fukata et al. [5] have shown,
this region forms around horizontal critical speeds.

(2) The effect of the high-speed rotor results in a larger unstable region in roller bearing. Both
regions of unstable response also show the occurrence of chaos for high-speed rotor.
Invariably, the route to chaos is seen to be intermittency mechanism by period doubling
behavior.
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amplitude um

S.P. Harsha | Journal of Sound and Vibration 290 (2006) 65—100 95

2.5
vC Horizontal Displacement
2 L .
€15} .
[0
kel
2
g r venr h
©
05 B
0 M\_/J\/\Jk/w\_‘_/\__ )L_N/k—..J X ¥
0 200 400 600 800 1000 1200 1400 1600 1800 2000
frequency Hz
1.6
. . 0.4
14} vC Vertical Displacement .
2 03
12} 1 €
= 02
H | 2 01
GE) .
08} 1 £ o
o
0.6 E [
a 0.1
0.4} V€2 . T -0.2
02} | E 0.3
0 w ) SR S D | -0.4
0 200 400 600 800 10001200 14001600 18002000 -1.15 -1 -1.05 -1
frequency Hz Horizontal Displacement (um)
800 1000
__ 600 '
4
= — 500
g 400 g
> =
_§ 200 - :5 0
E 0 %
g 200 > -500
o @
g -400 § 1000
T -600 b3 >
-800 -1500
-1.16 -1.11 -1.06 -0.3 -0.1 0.1 0.3
Horizontal Displacement (um) Vertical Displacement (um)
Poincaré Maps
-1.02 0.4
-1.04 03
€
-1.06 2 02
§
-1.00 g o1
[0
14 8 0
&
-1.12 3 0.1
-1.14 8 02
T
116 2 03
-1.18 1 | 0.4 4 |
0.05 0.1 0.15 0.2 0.25 0.3 0.05 0.1 0.15 0.2 0.25 0.3
Time (s) Time (s)

Fig. 18. Response at 8000 rev/min for y, = 1 um, W = 6 N.
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Fig. 19. Response at 8200 rev/min for y, = 1 ym, W = 6 N.
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(3) Based on the characteristics of the dynamic behavior of the system, the responses may be put
into three categories. (i) The system responses are periodic. This is a well-behaved region,
which helps the designer to predict the trends accurately and without ambiguity. (ii)) The
system responses are of mixed nature. The horizontal and vertical displacement spectra show a
banded structure and there are closed orbits with dense and not so dense regions. The response
can be considered neither perfectly chaotic nor perfectly periodic. It is not perfectly or
predominantly chaotic because the two spectra for horizontal and vertical displacements have
only a slightly banded structure. The orbits in Poincaré maps are complicated because of this
mixed nature of the response. For these responses, the hidden danger is the periodicity. The
periodic response may lead designers to overlook its large sensitivity to small variations of
system parameters or operating conditions. (iii) The responses are chaotic. The Poincare maps
of chaotic response have a fractal structure that repeats as the map is magnified. The time
responses also show beat- and chaos-like behavior. It is clear that loss of periodicity is one
characteristic feature of the chaotic solution.
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